
1.The Lagrange's Method



    Consider choosing      and      to maximise             ，
when    and     must satisfy some particular relation to 
each other that we write in implicit form as 
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We write this problem as follows
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      Suppose we multiply the constraint equation by a new 
variable, call it λ (lambda), we will have constructed a new 
function, called the Lagrangian function, or Lagrangian for 
short, and denoted by a script L(·).
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    We would take all three of its partial derivatives and 
set them equal to zero
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    Consider our contrived function L(·) and take its total 
differential
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By assumption, dL=0, so
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 The constraint is satisfied at      and     , so *
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    We can identify those changes        and        that 
make dg = 0 by totally differentiating the constraint 
equation and setting it equal to zero. So
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This is to say that
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     Lagrange's method 'works' for functions with any 
number of variables, and in problems with any number of 
constraints, as long as the number of constraints is less 
than the number of variables being chosen. Suppose we 
have a function of n variables and we face m constraints, 
where m < n.
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    To solve this, form the Lagrangian by multiplying each 
constraint equation     by a different Lagrangian 
multiplier      and subtracting them all from the objective 
function f .
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    The first-order conditions again require that all partial 
derivatives of L be equal to zero at the optimum. Because L 
has n + m variables, there will be a system of n + m equations 
determining the n + m variables                 ** λx  and 
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