
2. The Envelope Theorem
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The Envelope theorem states that for every            ,Ua



Proof

Form the Lagrangian for the maximisation problem
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If we evaluate this derivative at the point                  a,ax 

We begin by directly differentiating        with 

respect to     . Because      affects f directly and 

indirectly through its influence on each variable
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Go back to the first-order conditions, substituting into 

the bracketed term of the summation.
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Go back again to the first-order conditions ①
and look at the second identity in the system.


