

7. Relations Between the Two

Though the indirect utility function and the expenditure function are conceptually distinct, there is obviously a close relationship between them. Let $v(\mathbf{p}, y)$ and $e(\mathbf{p}, u)$ be the indirect utility function and expenditure function for some consumer whose utility function is continuous and strictly increasing.

Then for all
$$\mathbf{p} \gg \mathbf{0}$$
, $y \ge 0$, and $u \in U$
 $e(\mathbf{p}, v(\mathbf{p}, y)) = y$
 $v(\mathbf{p}, e(\mathbf{p}, u)) = u$

As the CES direct utility function gives the indirect utility function

 $v(\mathbf{p}, y) = y(p_1^r + p_2^r)^{-1/r} \text{ for any } \mathbf{p} \text{ and income level } y$ Therefore, for an income level y equal to $e(\mathbf{p}, u)$ dollars $v(\mathbf{p}, e(\mathbf{p}, u)) = e(\mathbf{p}, u)(p_1^r + p_2^r)^{-1/r}$ Next, for any \mathbf{p} and u $v(\mathbf{p}, e(\mathbf{p}, u)) = u$ Then $e(\mathbf{p}, u)(p_1^r + p_2^r)^{-1/r} = u$

Now we get the expression for the expenditure function

$$e(\mathbf{p},u) = u(p_1^r + p_2^r)^{1/r}$$

This is the same expression for the expenditure function obtained by directly solving the consumer's expenditure - minimisation problem.

Suppose, instead, we begin with knowledge of the expenditure function and want to derive the indirect utility function. For the CES direct utility function $e(\mathbf{p}, u) = u(p_1^r + p_2^r)^{1/r}$ Then for utility level v(**p**, y), we will have $e(\mathbf{p}, v(\mathbf{p}, y)) = v(\mathbf{p}, y)(p_1^r + p_2^r)^{1/r}$ *Next, for any* **p** *and y* $e(\mathbf{p}, v(\mathbf{p}, y)) = y$ Then $(\mathbf{p}, y)(p_1^r + p_2^r)^{1/r} = y$

Now we get the expression for the expenditure function $v(\mathbf{p}, y) = y(p_1^r + p_2^r)^{-1/r}$

This is what we obtained by directly solving the consumer's utility - maximisation problem.

We can pursue this relationship between utility maximisation and expenditure minimisation a bit further by shifting our attention to the respective solutions to these two problems, the Marshallian and Hicksian demand functions.