
9. The Slutsky Equation



    Let x(p, y) be the consumer's Marshallian demand 
system. Let      be the level of utility the consumer 
achieves at prices p and income y. 
    Then
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Proof
    For any prices and level of utility     
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    Because this holds for all           , we can differentiate both 
sides with respect to     and the equality is preserved. The 
Hicksian demand on the left-hand side, the Marshallian 
demand on the right-hand side
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     We know that the minimum expenditure at prices p 
and maximum utility that can be achieved at prices p 
and income y is equal to income y. Therefore
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    The partial with respect to      of the expenditure 
function in ① is just the Hicksian demand for good j at 
utility     . Because                    , this must also be the 
Hicksian demand for good j at utility v(p, y)
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③

(by Shaphard's lemma)



    To complete the proof, substitute from ② and ③ 
into ① to obtain

    With a bit of rearranging, we have what we wanted 
to show
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     Slutsky equations provide neat analytical expressions for 
substitution and income effects. They also give us an 
'accounting framework' , detailing how these must combine 
to explain any total effect of a given price change. Yet by 
themselves, the Slutsky relations do not answer any of the 
questions we set out to address. 


