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9. The Slutsky Equation
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Let x(p, y) 1*96 the consumer's Marshallian demand
system. Let U be the level of utility the consumer
achieves at prices p and income ).

Then
h %
axi(p,y):axi (p,u )_xjﬁ)’y)axi(p’y) , ,j=1,...,n
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Proof

For any prices and level of utility u”

x! (p,u*)= X,-( ,e(P:”*))

Because this holds for all p >>0, we can differentiate both

sides with respect to p; and the equality is preserved. The
Hicksian demand on the left-hand side, the Marshallian
demand on the right-hand side

8xl.h (p,u*) _ Ox, (p, e(p, u*)) N Ox, (p, e(p,u* )) 6e(p,u*)
op; op; Oy op;
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We know that the minimum expenditure at prices p
and maximum utility that can be achieved at prices p
and income y is equal to income y. Therefore

elp.u”)= e(p.v(p, )= ®

The partial with respect to P; of the expenditure
function in Q is just the Hicksian demand for good j at
utility u". Because u” =v(p,y), this must also be the
Hicksian demand for good j at utility v(p, y)

8e(p,u*)

op;
(by Shaphard's lemma)

= x?(p,u*)= x! (p.v(p,y))=x,(p.y) ®
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To complete the proof, substitute from @ and (3
into ) to obtain

axih(p’l;): a‘xi( ’y)+ axi(p’y)

X AP,V
ap; ap; Oy /(p.)

With a bit of rearranging, we have what we wanted
to show

8xl.(p,y) _ Ox.!" (p,u*)_x.(p y) c’ixi(P,y)
op; op; l Oy

ij=1,..,n
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Slutsky equations provide neat analytical expressions for
substitution and income effects. They also give us an
‘accounting framework', detailing how these must combine
to explain any total effect of a given price change. Yet by
themselves, the Slutsky relations do not answer any of the
questions we set out to address.




